If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9k^2-4k-4=0
a = 9; b = -4; c = -4;
Δ = b2-4ac
Δ = -42-4·9·(-4)
Δ = 160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{160}=\sqrt{16*10}=\sqrt{16}*\sqrt{10}=4\sqrt{10}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4\sqrt{10}}{2*9}=\frac{4-4\sqrt{10}}{18} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4\sqrt{10}}{2*9}=\frac{4+4\sqrt{10}}{18} $
| 8r-5=-10+7r | | -5x-7=9+x-2x | | -5x-7=9+x-12x | | 1/3(2x-1)-1/4(2x+1)=1/12(2-x) | | 4(7-8x)-2x=-210 | | 7x+4x=7x-16 | | -7(1+2r)=105 | | 23+3y-1=10y-13-2y | | 8(8x-8)=-320 | | 2=r−78/6 | | 13+3j=55 | | -2+7b=b-3+5b | | -7-4(-7x-3)=10 | | x+18=2x-7 | | -8-2a=-a-16 | | 7n+n=16+6n | | -7-4(-7x-3)=3 | | 2^x+3=15 | | -5(7x-2)=-270 | | -4n+8=1-4n | | 2(4x+7)=-10 | | 7r=8r+8r | | 11n^2=-5 | | -3p+2=-10-5p | | 6n^2-5n=-5 | | X=2x+22 | | 3X=6x+22 | | 5u+6=-19 | | H(t)=-16+^2+46+6 | | 15−2q=5 | | 15x+23(x-3)=121 | | X^2+9x+1=17 |